Limitberguna sebagai pernyataan suatu fungsi f (x) yang akan mendekati nilai tertentu apabila x mendekati nilai tertentu. Pendekatan dalam fungsi ini terbatas pada dua bilangan positif yang sangat kecil, dengan nama lai epsilon dan delta. Hubungan antara kedua bilangan positif ini terangkum dalam definisi limit di bawah ini: Teorema Limit Utama Kelas 12 SMALimit Fungsi TrigonometriLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi TrigonometriKALKULUSMatematikaRekomendasi video solusi lainnya0307 lim x menuju tak hingga cos 1/x-5pi/4-1/2= ... 0256Tentukan nilai dari limit fungsi dibawah ini lim x mende...0341Nilai dari lim x->tak hingga 16x^2[1-cos8/x]= ...0215Hitunglah nilai limit fungsi berikut. lim x menuju tak hi...Teks videojika mendapatkan soal seperti ini maka hal pertama yang diperhatikan adalah ketika X menuju Infinity maka 1 per X dan saja yang menuju sehingga Sin dari 1 per X juga menuju 0 maka jawaban dari limit ini adalah limit x menuju 0 dari 3 x + Sin 1 per X = Karena limit x menuju Infinity dari sin 1 per x adalah 0 maka tinggal dimasukkan Infinity kedalam 3x suku yang 3 x maka akan diperoleh hasil Infinity sehingga nilai dari limit x menuju Infinity dari 3 x + Sin 1 x adalah pilihan yaitu Infinity sampai jumpa di pertemuan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Beberapateorema berikut sering kali digunakan untuk menyelesaikan persoalan terkait limit tak hingga. Teorema Limit Tak Hingga Keterhubungan Tak Hingga dan Nol $\displaystyle \lim_{x \to \infty} \dfrac{1}{x^n} = 0$ untuk $n \geq 1$ Ketakterhinggaan Fungsi Rasional Berbentuk Polinomial Jika $f(x)$ dan $g(x)$ adalah fungsi polinomial, maka Limit memiliki arti umum sebagai batas ambang dari suatu nilai. Sehingga, limit tak hingga memiliki pengertian bahwa suatu nilai dari persamaan yang didekati oleh nilai yang sangat besar atau tak hingga simbol ∞. Nilai limit tak hingga fungsi trigonometri merupakan fungsi trigonometri yang didekati oleh suatu nilai yang sangat besar. Definisi limit menyatakan bahwa suatu fungsi fx akan mendekati nilai tertentu jika x mendekati nilai tertentu. Sebagai contoh, perhatikan sebuah fungsi fx = 2x – 5 dan nilai x mendekati 3 x → 0. Jika x dekat 3 maka nilai fungsi fx = 2x – 5 akan mendekati nilai 23 – 5 = 6 – 5 = 1. Jika x mendekati nilai tak hingga maka bagaimana nilai limitnya? Tentunya nilainya juga akan dekat dengan tak hingga. Pada contoh nilai fx = 2x – 5, jika x dekat tak hingga maka nilai fx juga akan mendekati nilai tak hingga. Beberapa bentuk soal limit memuat fungsi trigonometri yang didekati oleh nilai tak hingga sangat besar. Bagaimana cara menentukan nilai limit tak hingga fungsi trigonometri? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Nilai Limit Tak Hingga Fungsi Trigonometri Cara Menentukan Nilai Limit Fungsi Trigonometri Contoh Soal dan Pembahasan Contoh 1 – Soal Limit Tak Hingga Fungsi Trigonometri Contoh 2 – Soal Limit Tak Hingga Fungsi Trigonometri Contoh 3 – Soal Limit Tak Hingga Fungsi Trigonometri Pada sebuah fungsi trigonometri fx = cos 1/x, jika x mendekati nilai yang sangat besar atau tak hingga maka nilai fx = cos 1/x akan dekat terhadap cos 0 = 1. Hal tersebut dikarenakan ketika substitusi nilai x pada 1/x akan menghasilkan nilai yang mendaki 0. Sehingga, jika x dekat tak hingga maka nilai fx = cos 1/x akan dekat terhadap cos 0 = 1. Tidak semua fungsi trigonometri dapat ditentukan nilai limitnya, contohnya pada fungsi trigonometri y = cos x. Fungsi cos x memiliki nilai yang periodik. Nilai terbesar cos x adalah 1 dan nilai terkecilnya adalah –1. Nilai cos x = 1 dicapai saat besar sudut x = 0o, 360o, dan lain sebagainya. Besar nilai sudut mendekati tak hingga tidak dapat menghasilkan suatu nilai cosinus yang dekat dengan nilai tersebut . Kesimpulannya, jika besar sudut x tak hingga maka nilai limit cos x tidak terdefinisi. Bentuk soal limit x tak hingga dapat memuat fungsi nilai trigonometri yang lebih rumit dari contoh di atas. Namun, konsep dalam mencari nilai limit tak hingga fungsi trigonometri secara umum dilakukan seperti pendekatan yang diberikan pada contoh-contoh di atas. Baca Juga Pengertian Limit Cara Menentukan Nilai Limit Fungsi Trigonometri Perhatikan sebuah fungsi trigonometri y = cos x/x. Nilai limit dari fungsi trigonometri tersebut untuk x mendekati tak hingga adalah nol. Nilai tersebut diperoleh dengan substitusi nilai tak hingga pada persamaan. Berapapun nilai pembilang, ketika dibagi bilangan yang sangat besar tak hingga akan menghasilkan nilai yang mendekati nol. Sehingga dapat disimpulkan bahwa jika x dekat tak hingga maka nilai cos x/ x akan dekat dengan nol. Melalui cara yang sama dapat diperoleh juga nilai limit x menuju tak hingga dari fungsi y = sin x/x. Jika x dekat tak hingga maka nilai sin x/ x akan dekat dengan nol. Dua persamaan nilai limit sederhana di atas akan cukup membantu dalam mengetahui nilai limit tak hingga dari suatu fungsi trigonometri yang lebih kompleks. Sebagai contoh, perhatikan cara mendapatkan nilai limit fungsi trigonometri berikut. Baca Juga Rumus Cepat Menentukan Nilai Limit Tak Hingga Untuk Beberapa Jenis Soal Tertentu Contoh Soal dan Pembahasan Bentuk soal limit fungsi trigonometri sangat beragam. Namun soal yang beragam tersebut dapat diselesaikan dengan bantuan konsep yang sudah dipelajari di atas dan beberapa teknik mengerjakan. Latihan soal dapat membantu mengukur pemahaman sobat idschool terhadap pemahaman sebuah materi. Selain itu, latihan soal akan menambah perbendaharaan jenis soal yang biasanya diberikan dalam ujian. Baca Juga 7 Tips Menentukan Nilai Limit Fungsi pada Suatu Titik Beberapa contoh soal limit tak hingga fungsi trigonometri berikut dapat sobat idschool gunakan untuk menambah pemahaman sobat idschool. Contoh soal dilengkapi dengan pembahasan yang dapat digunakan sebagai tolak ukur keberhasilan mengerjakan soal. Selamat berlatih. Contoh 1 – Soal Limit Tak Hingga Fungsi Trigonometri PembahasanCara menentukan nilai limit tak hingga fungsi trigonometri dengan bentuk seperti pada soal dilakukan dengan mengalikan persamaan dengan x/x dan mengalikannya secara aljabar. Selanjutnya akan diperoleh bentuk fungsi trigonometri yang dapat diketahui nilai limitnya seperti cara penyelesaian berikut. Jadi, nilai limit fungsi tak hingga tersebut sama dengan C Contoh 2 – Soal Limit Tak Hingga Fungsi Trigonometri PembasahanUntuk bentuk soal limit tak hingga fungsi trigonometri seperti di atas dapat ditentukan dengan memisalkan 1/x = α. Diketahui bahwa nilai x → ∞ maka α → ∞ untuk x → 0. Sehingga bentuk soal limit tak hingga fungsi trigonometri tersebut dapat ditentukan nilainya seperti cara berikut. Jadi, nilai limit tak hingga fungsi trigonometri tersebut adalah 1/ B Contoh 3 – Soal Limit Tak Hingga Fungsi Trigonometri PembahasanSoal limit fungsi trigonometri seperti pada soal dapat dilakukan dengan melajukan operasi aljabar dan pemisalan nilai α = 1/x. Sehingga nilai x = 1/α dengan x → ∞ maka α → 0. Soal limit tak hingga fungsi trigonometri tersebut dapat diselesaikan seperti pada cara penyelesaian berikut. Jadi, nilai limit tak hingga fungsi trigonometri teersebut sama dengan -9. Jawaban E Demikianlah tadi ulasan materi limit tak hingga fungsi trigonometri yang disertai dengan contoh cara menentukan nilai limit tak hingga fungsi trigonometri. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Kumpulan Berbagai Bentuk Soal Limit Fungsi Trigonometri Materidan latihan pembahasan soal - soal yang berhubungan dengan limit trigonometri untuk "x" mendekati tak hingga.Part 2 disini ya :

Blog Koma - Pada artikel ini kita akan membahas materi Limit Tak Hingga Fungsi Trigonometri. Materi Limit Tak Hingga Fungsi Trigonometri merupakan gabungan bentuk limit tak hingga dan limit fungsi trigonometri. Jika kita perdalam lagi, ternyata bentuk "Limit Tak Hingga Fungsi Trigonometri" lebih menekankan pada limit fungsi trigonometrinya, sehingga teman-teman harus benar-benar menguasai materi limit fungsi trigonometrinya terlebih dahulu. Bentuk tak hingga $\infty$ jika sebagai sudut suatu fungsi trigonometri maka tidak bisa kita tentukan nilainya, misalkan $ \sin \infty, \cos \infty, \tan \infty $ tidak bisa kita tentukan nilainya karena nilai $ \sin x $ berkisar $ -1 \leq \sin x \leq 1 $, begitu juga nilai $ \cos x $ berkisar $ -1 \leq \cos x \leq 1 $ , dan untuk $ \tan x $ berkisar $ -\infty \leq \tan x \leq \infty $, tentu dengan $ x $ yang sudah pasti. Nah untuk memudahkan, maka bentuk yang diguankan adalah $ \frac{1}{\infty} = 0 $ sehingga nilai fungsi trigonometrinya bisa kita hitung yaitu $ \sin \frac{1}{\infty} = 0 , \cos \frac{1}{\infty} = 1, \tan \frac{1}{\infty} = 0 $ . Dan bentuk ini cocok dengan limit fungsi trigonometri yang akan kita bahas dalam artikel Limit Tak Hingga Fungsi Trigonometri. Limit Tak Hingga Fungsi Trigonometri ini ternyata soalnya dikeluarkan pada SBMPTN 2017 matematika IPA atau matematika saintek satu soal disetiap kodenya. Nah, berlatar belakang dari inilah saya membahas artikel ini secara lebih khusus agar bisa membantu teman-teman yang ingin mempelajarinya atau siapa tahu tahun-tahun berikutnya akan keluar lagi di soal seleksi masuk PTN lainnya. Dalam pembahasan Limit Tak Hingga Fungsi Trigonometri, kita harus menguasai sifat-sifat limit fungsi trigonometri, rumus-rumus dasar trigonometri, dan limit tak hingga bentuk aljabar. Sifat-sifat limit fungsi Trigonometri $\clubsuit $ Sifat-sifat limit fungsi trigonometri i. $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\sin bx} = \frac{a}{b} $ ii. $ \displaystyle \lim_{x \to 0 } \frac{\tan ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\tan bx} = \frac{a}{b} $ iii. $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\sin bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\tan bx} = \frac{a}{b} $ iv. $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\tan bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\sin bx} = \frac{a}{b} $ Rumus-rumus dasar Trigonometri $\spadesuit $ Beberapa rumus yang digunakan dalam limit fungsi trigonometri i. $ 1 - \cos px = 2\sin \frac{1}{2} px . \sin \frac{1}{2} px $ ii. $ \cos A - \cos B = -2\sin \frac{1}{2}A+B .\sin \frac{1}{2}A-B $ iii. Identitas trigonometri $ \sin ^2 x + \cos ^2 x = 1 \rightarrow 1 - \cos ^2 x = \sin ^2 x $ Limit tak hingga fungsi aljabar $\clubsuit $ Limit tak hingga pecahan Misalkan fungsinya $ fx = ax^n + a_1x^{n-1} + ... \, $ dengan pangkat tertinggi $ n \, $ dan $ gx = bx^m + b_1 x^{m-1} + .... $ dengan pangkat tertinggi $ m \, $ , maka limit di tak hingganya $ \displaystyle \lim_{x \to \infty } \frac{ax^n + a_1x^{n-1} + ...}{bx^m + b_1 x^{m-1} + ....} \left\{ \begin{array}{ccc} = \frac{0}{b} & = 0 & , \text{untuk } n m \end{array} \right. $ Catatan Ambil koefisien pangkat tertingginya. Contoh Soal Limit Tak Hingga Fungsi Trigonometri 1. Tentukan hasil limit berikut ini a. $ \displaystyle \lim_{x \to \infty } \, x \tan \frac{1}{x} $ b. $ \displaystyle \lim_{y \to \infty } \, \frac{1}{y} \cot \frac{1}{y} $ c. $ \displaystyle \lim_{x \to \infty } \, \frac{ \csc \frac{1}{x} }{x} $ Penyelesaian a. Misalkan $ \frac{1}{x} = y $ , sehingga $ x = \frac{1}{y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, x \tan \frac{1}{x} & = \displaystyle \lim_{y \to 0 } \, \frac{1}{y} \tan y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{ \tan y }{y} \\ & = 1 \end{align} $ b. Misalkan $ \frac{1}{y} = x $ , dan $ \cot x = \frac{1}{\tan x} $ . Untuk $ y $ mendekati $ \infty $ maka $ x $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{y \to \infty } \, \frac{1}{y} \cot \frac{1}{y} & = \displaystyle \lim_{x \to 0 } \, x \cot x \\ & = \displaystyle \lim_{x \to 0 } \, x . \frac{1}{\tan x} \\ & = \displaystyle \lim_{x \to 0 } \, \frac{x}{\tan x} \\ & = 1 \end{align} $ c. Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{ \csc \frac{1}{x} }{x} & = \displaystyle \lim_{x \to \infty } \, \frac{1}{x} . \csc \frac{1}{x} \\ & = \displaystyle \lim_{y \to 0 } \, y . \csc y \\ & = \displaystyle \lim_{y \to 0 } \, y . \frac{1}{\sin y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{y}{\sin y} \\ & = 1 \end{align} $ 2. Tentukan hasil limit tak kingga fungsi trigonometri berikut ini a. $ \displaystyle \lim_{x \to \infty } \, \tan \frac{5}{x} . \csc \frac{2}{x} $ b. $ \displaystyle \lim_{x \to \infty } \, \cot 3x^{-1} . \sin x^{-1} $ b. $ \displaystyle \lim_{x \to \infty } \, \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} $ Penyelesaian a. Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \tan \frac{5}{x} . \csc \frac{2}{x} & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \csc 2y \\ & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \frac{1}{\sin 2y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\tan 5y}{\sin 2y} \\ & = \frac{5}{2} \end{align} $ b. Misalkan $ \frac{1}{x} = y $ , dan $ \cot y = \frac{1}{\tan y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \cot 3x^{-1} . \sin x^{-1} & = \displaystyle \lim_{x \to \infty } \, \cot \frac{3}{x} . \sin \frac{1}{x} \\ & = \displaystyle \lim_{y \to 0 } \, \cot 3y . \sin y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{1}{\tan 3y} . \sin y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\sin y}{\tan 3y} \\ & = \frac{1}{3} \end{align} $ c. Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} & = \displaystyle \lim_{y \to 0 } \, \frac{\cot \frac{1}{2}y}{\csc 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\frac{1}{\tan \frac{1}{2}y}}{\frac{1}{\sin 3y}} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\sin 3y}{\tan \frac{1}{2}y} \\ & = \frac{3}{ \frac{1}{2} } = 6 \end{align} $ 3. Tentukan hasil limit tak kingga fungsi trigonometri $ \displaystyle \lim_{y \to \infty } \, \sqrt{6y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} $? Penyelesaian *. Misalkan $ \frac{1}{\sqrt{y}} = x $ , sehingga $ \sqrt{y} = \frac{1}{x} $ . Untuk $ y $ mendekati $ \infty $ maka $ x $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{y \to \infty } \, \sqrt{6y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} & = \displaystyle \lim_{y \to \infty } \, \sqrt{6}.\sqrt{y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6}.\frac{1}{x} \cos 3x \sin 5x \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6}. \cos 3x . \frac{\sin 5x}{x} \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6} \cos 3x . \displaystyle \lim_{x \to 0 } \frac{\sin 5x}{x} \\ & = \sqrt{6} . \cos 0 . 5 \\ & = \sqrt{6}. 1 . 5 = 5\sqrt{6} \end{align} $ 4. $ \displaystyle \lim_{x \to \infty } \, \frac{1 - \cos \frac{4}{x}}{ \frac{1}{x} . \tan \frac{3}{x}} = .... ? $ Penyelesaian *. Misalkan $ \frac{1}{x} = y $. Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. Bentuk $ 1 - \cos 4y = 2\sin 2y. \sin 2y $ *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{1 - \cos \frac{4}{x}}{ \frac{1}{x} . \tan \frac{3}{x}} & = \displaystyle \lim_{y \to 0 } \, \frac{1 - \cos 4y}{ y . \tan 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{2\sin 2y. \sin 2y}{ y . \tan 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{2\sin 2y}{ y } . \displaystyle \lim_{y \to 0 } \, \frac{ \sin 2y}{\tan 3y} \\ & = .\frac{2}{3} = \frac{8}{3} \end{align} $ 5. Tentukan hasil limit $ \displaystyle \lim_{x \to \infty } \, \frac{2x \cot \frac{2}{x} - 3 \cot \frac{2}{x}}{5x^2 - 2x} $ Penyelesaian *. Misalkan $ \frac{1}{x} = y $ dan $ \cot y = \frac{1}{\tan y} $ Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{2x \cot \frac{2}{x} - 3 \cot \frac{2}{x}}{5x^2 - 2x} & = \displaystyle \lim_{x \to \infty } \, \frac{2x - 3 \cot \frac{2}{x}}{x5x - 2} \\ & = \displaystyle \lim_{x \to \infty } \, \frac{2x - 3 }{5x - 2} . \frac{1}{x} . \cot \frac{2}{x} \\ & = \displaystyle \lim_{x \to \infty } \, \frac{2x - 3 }{5x - 2} . \displaystyle \lim_{x \to \infty } \, \frac{1}{x} . \cot \frac{2}{x} \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, y . \cot 2y \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, y . \frac{1}{\tan 2y} \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, \frac{y}{\tan 2y} \\ & = \frac{2}{5}. \frac{1}{2} = \frac{1}{5} \end{align} $ 6. $ \displaystyle \lim_{x \to \infty } \frac{\cos \frac{4}{x}+ \cos \frac{2}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{4}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{2}{x}}{\sin ^2 \frac{1}{x} - \cos \frac{2}{x} + 1}= ...?$ Penyelesaian *. Misalkan $ \frac{1}{x} = y $, maka $ \frac{1}{\sqrt{x}} = \sqrt{y} $ Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Mengubah bentuk soalnya $ \begin{align} & \displaystyle \lim_{x \to \infty } \frac{\cos \frac{4}{x}+ \cos \frac{2}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{4}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{2}{x}}{\sin ^2 \frac{1}{x} - \cos \frac{2}{x} + 1} \\ & = \displaystyle \lim_{y \to 0 } \frac{\cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y}{\sin ^2 y - \cos 2y + 1} \end{align} $ *. Mengubah bentuk pembilang dan penyebutnya -. Pembilangnya, Rumus $ \cos A - \cos B = -2 \sin \frac{1}{2}A+B.\sin \frac{1}{2}A-B $ $ \begin{align} & \cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y \\ & = \cos 4y - \cos 4y. \sin 3\sqrt{y} - \cos 2y + \cos 2y . \sin 3\sqrt{y} \\ & = \cos 4y 1 - \sin 3\sqrt{y} - \cos 2y 1 - \sin 3\sqrt{y} \\ & = \cos 4y - \cos 2y 1 - \sin 3\sqrt{y} \\ & = -2 \sin \frac{1}{2}4y+2y. \sin \frac{1}{2}4y-2y 1 - \sin 3\sqrt{y} \\ & = -2 \sin 3y. \sin y. 1 - \sin 3\sqrt{y} \end{align} $ -. Penyebutnya, Rumus $ 1 - \cos px = 2 \sin \frac{1}{2} px . \sin \frac{1}{2} px $ $ \begin{align} \sin ^2 y - \cos 2y + 1 & = \sin ^2 y + 1 - \cos 2y \\ & = \sin ^2 y + 2\sin y . \sin y \\ & = 3\sin y . \sin y \end{align} $ *. Menyelesaikan limitnya $ \begin{align} & \displaystyle \lim_{y \to 0 } \frac{\cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y}{\sin ^2 y - \cos 2y + 1} \\ & = \displaystyle \lim_{y \to 0 } \frac{-2 \sin 3y. \sin y. 1 - \sin 3\sqrt{y} }{3\sin y . \sin y} \\ & = \displaystyle \lim_{y \to 0 } \frac{-2 \sin 3y. 1 - \sin 3\sqrt{y} }{3\sin y } \\ & = \displaystyle \lim_{y \to 0 } \frac{\sin 3y}{\sin y} . \frac{-2}{3} 1 - \sin 3\sqrt{y} \\ & = \displaystyle \lim_{y \to 0 } \frac{\sin 3y}{\sin y} . \displaystyle \lim_{y \to 0 } \frac{-2}{3} 1 - \sin 3\sqrt{y} \\ & = 3 . \frac{-2}{3} 1 - \sin 0 \\ & = 3 . \frac{-2}{3} 1 - 0 \\ & = 3 . \frac{-2}{3}. 1 = -2 \end{align} $ Berikut kami sajikan 4 soal limit tak hingga fungsi trigonometri yang keluar pada soal SBMPTN 2017 matematika IPA dari 4 kode berbeda Nomor 11 , Soal SBMPTN 2017 Kode 165 $ \displaystyle \lim_{y \to \infty } y . \sin \frac{3}{y}. \cos \frac{5}{y} = .... $ A. $ 0 \, $ B. $ 1 \, $ C. $ 2 \, $ D. $ 3 \, $ E. $ 4 $ Nomor 11, Soal SBMPTN 2017 Kode 166 $ \displaystyle \lim_{x \to \infty } \frac{\sin \frac{3}{x}}{\left1 - \cos \frac{2}{x} \right.x^2.\sin \frac{1}{x}} = .... $ A. $ 0 \, $ B. $ \frac{2}{3} \, $ C. $ 1 \, $ D. $ \frac{3}{2} \, $ E. $ 3 $ Nomor 11, Soal SBMPTN 2017 Kode 167 $ \displaystyle \lim_{x \to \infty } \, x\left1 - \cos \frac{1}{\sqrt{x}} \right = .... $ A. $ 1 \, $ B. $ \frac{1}{2} \, $ C. $ \frac{1}{3} \, $ D. $ \frac{1}{4} \, $ E. $ \frac{1}{5} $ Nomor 11, Soal SBMPTN 2017 Kode 168 $ \displaystyle \lim_{x \to \infty } \, 2x \tan \frac{1}{x}. \sec \frac{2}{x} = .... $ A. $ 0 \, $ B. $ 1 \, $ C. $ 2 \, $ D. $ 3 \, $ E. $ 4 $ Demikian pembahasan materi Limit Tak Hingga Fungsi Trigonometri dan contohnya. Silahkan baca juga materi Limit lainnya.

LimitTak Hingga Limit tak hingga ialah kajian yang tepat dalam mengetahui kecendrungan suatu fungsi apabila nilai variabelnya dibuat semakin besar. Apabila di katakan, x menuju tak hingga, ditulis x → ∞, artinya nilai x semakin besar atau bertambah besar tanpa batas. Diberikan sebuah fungsi f (x) = 1/x 2. Tentunyanilainya juga akan dekat dengan tak hingga. Pada contoh nilai f (x) = 2x - 5, jika x dekat tak hingga maka nilai f (x) juga akan mendekati nilai tak hingga. Semua fungsi dapat dicari nilai limitnya dengan pendekatan yang sama seperti cara tersebut. Misalkan pada sebuah fungsi trigonometri f (x) = cos ( 1 / x ). . 373 182 114 459 66 6 379 15

limit x mendekati tak hingga x sin 1 x